论文标题

时空步态特征具有全球距离对齐

Spatio-temporal Gait Feature with Global Distance Alignment

论文作者

Chen, Yifan, Zhao, Yang, Li, Xuelong

论文摘要

步态识别是一种重要的认识技术,因为步态不容易伪装,并且不需要合作来识别受试者。但是,许多现有方法在保留时间信息和细粒度信息方面不足,从而减少了其歧视。当发现具有类似行走姿势的受试者时,这个问题会更严重。在本文中,我们尝试增强从两个方面的时空步态特征的歧视:有效提取时空步态特征和合理的提取特征的完善。因此,提出了我们的方法,它由时空特征提取(SFE)和全局距离比对(GDA)组成。 SFE使用时间特征融合(TFF)和细粒特征提取(FFE),从原始轮廓中有效提取时空特征。 GDA在现实生活中使用大量未标记的步态数据作为优化提取的时空特征的基准。 GDA可以使提取的特征具有较低的阶层间相似性和较高的阶级相似性,从而增强了它们的歧视。对Mini-OUMVLP和CASIA-B进行的广泛实验证明,与某些最新方法相比,我们的结果更好。

Gait recognition is an important recognition technology, because gait is not easy to camouflage and does not need cooperation to recognize subjects. However, many existing methods are inadequate in preserving both temporal information and fine-grained information, thus reducing its discrimination. This problem is more serious when the subjects with similar walking postures are identified. In this paper, we try to enhance the discrimination of spatio-temporal gait features from two aspects: effective extraction of spatio-temporal gait features and reasonable refinement of extracted features. Thus our method is proposed, it consists of Spatio-temporal Feature Extraction (SFE) and Global Distance Alignment (GDA). SFE uses Temporal Feature Fusion (TFF) and Fine-grained Feature Extraction (FFE) to effectively extract the spatio-temporal features from raw silhouettes. GDA uses a large number of unlabeled gait data in real life as a benchmark to refine the extracted spatio-temporal features. GDA can make the extracted features have low inter-class similarity and high intra-class similarity, thus enhancing their discrimination. Extensive experiments on mini-OUMVLP and CASIA-B have proved that we have a better result than some state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源