论文标题
稳定所有Kähler模量在扰动LV中
Stabilising all Kähler moduli in perturbative LVS
论文作者
论文摘要
在这项工作中,我们调查了模量稳定问题以及在IIB字符串理论框架内的De Sitter真空的要求。使用各种来源产生的扰动效果,例如$α^\ prime $校正,对数以及kk和绕组式的弦乐环校正,以及较高的导数$ f^4 $ contribentions,我们提出了一个模量稳定方案,在总体值中,总体上实现了$ \ lang的总体值,以实现总体值。 e^{a/g_s^2} $在弱耦合方案中,其中$ a $是给出的参数为$ a = \ frac {ζ[3]} {2ζ[2]} \ simeq 0.365381 $。我们还使用$ H^{1,1} = 3 $的$ k3 $ fibred Cy Thrifold提出了混凝土全球结构,该结构与标准环壳的属性共享了许多属性,随后在扰动级别修复所有三个KählerModuli所需的适当校正。我们进一步讨论是否可以通过在有效潜力中提升术语的适当贡献来确保De Sitter Vacua。
In this work we investigate the moduli stabilisation problem and the requirements for de Sitter vacua within the framework of type IIB string theory. Using perturbative effects arising from the various sources such as $α^\prime$ corrections, logarithmic as well as KK and winding-type string-loop corrections along with the higher derivative $F^4$-contributions, we present a moduli stabilisation scheme in which the overall volume is realised at exponentially large values such that $\langle {\cal V} \rangle \simeq e^{a/g_s^2}$ in the weak coupling regime, where $a$ is a parameter given as $a = \frac{ζ[3]}{2 ζ[2]} \simeq 0.365381$. We also present a concrete global construction using a $K3$-fibred CY threefold with $h^{1,1} =3$ which shares many of its properties with those of the standard toroidal case, and subsequently generates the appropriate corrections needed to fix all the three Kähler moduli at the perturbative level. We further discuss whether de Sitter vacua can be ensured through appropriate contributions of uplifting terms in the effective potential.