论文标题

机器学习以识别模拟星系簇中的ICL和BCG

Machine Learning to identify ICL and BCG in simulated galaxy clusters

论文作者

Marini, I., Borgani, S., Saro, A., Murante, G., Granato, G. L., Ragone-Figueroa, C., Taffoni, G.

论文摘要

如今,机器学习技术为分类问题提供了快速有效的解决方案,这些解决方案将需要通过传统方法进行大量计算资源。我们检查了被监督的随机森林在减去构件星系后将恒星分类为模拟星系簇中的恒星。这些动态不同的组件被解释为最亮的簇星系(BCG)和簇内光(ICL)中恒星的单个特性。我们采用匹配的恒星目录(由dianoga设置的29个模拟群集的不同动力学属性构建)来训练和测试分类器。输入特征是群集质量,归一化粒子群集距离和休息框速度。发现该模型可以正确识别大多数恒星,而在BCG郊区显示较大的误差,在BCG郊区,这两个组件的物理特性之间的差异不太明显。我们研究了分类器对数值分辨率,红移依赖性(最高$ z = 1 $)的鲁棒性,并包括天体物理模型。我们声称,分类器在$ z <1 $的模拟中提供一致的结果,并在不同的分辨率级别以及具有显着不同的子格里德模型的模拟结果中提供了一致的结果。检查了相空间结构,以评估是否恢复了恒星组件的一般特性:(i)鉴定为$ 0.04 $ \ r200,确定了BCG为主导的ICL和ICL主导区之间的过渡半径; (ii)BCG郊区($> 0.1 $ \ r200)在分类过程中受到不确定性的显着影响。总之,这项工作表明,使用机器学习来加快模拟中计算昂贵的分类的重要性。

Nowadays, Machine Learning techniques offer fast and efficient solutions for classification problems that would require intensive computational resources via traditional methods. We examine the use of a supervised Random Forest to classify stars in simulated galaxy clusters after subtracting the member galaxies. These dynamically different components are interpreted as the individual properties of the stars in the Brightest Cluster Galaxy (BCG) and IntraCluster Light (ICL). We employ matched stellar catalogues (built from the different dynamical properties of BCG and ICL) of 29 simulated clusters from the DIANOGA set to train and test the classifier. The input features are cluster mass, normalized particle cluster-centric distance, and rest-frame velocity. The model is found to correctly identify most of the stars, while the larger errors are exhibited at the BCG outskirt, where the differences between the physical properties of the two components are less obvious. We investigate the robustness of the classifier to numerical resolution, redshift dependence (up to $z=1$), and included astrophysical models. We claim that our classifier provides consistent results in simulations for $z<1$, at different resolution levels and with significantly different subgrid models. The phase-space structure is examined to assess whether the general properties of the stellar components are recovered: (i) the transition radius between BCG-dominated and ICL-dominated region is identified at $0.04$ \r200; (ii) the BCG outskirt ($> 0.1$ \r200) is significantly affected by uncertainties in the classification process. In conclusion, this work suggests the importance of employing Machine Learning to speed up a computationally expensive classification in simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源