论文标题
$ b $ -symplectic toric歧管的Bohr-Sommerfeld量化
Bohr-Sommerfeld quantization of $b$-symplectic toric manifolds
论文作者
论文摘要
我们通过$ b $ -Symplectic toric歧管定义了Bohr-Sommerfeld量化,并表明它与[GMW18B]的正式几何量化相吻合。特别是,我们证明了它的维度是由在歧管上复曲面作用的矩倍数中的积分点的签名计数给出的。
We define the Bohr-Sommerfeld quantization via $T$-modules for a $b$-symplectic toric manifold and show that it coincides with the formal geometric quantization of [GMW18b]. In particular, we prove that its dimension is given by a signed count of the integral points in the moment polytope of the toric action on the manifold.