论文标题

电荷对$ f(\ Mathcal {r},\ Mathcal {t},\ Mathcal {r} _ {λξ} \ Mathcal {t}^λξ}^)$ frate的影响(\ Mathcal {r},\ Mathcal {t},\ Mathcal {t}^{λξ} $ GRAVITY在$ f(\ Mathcal {r},\ Mathcal {t}^{λξ})$ f(\ Mathcal

Influence of Charge on Extended Decoupled Anisotropic Solutions in $f(\mathcal{R},\mathcal{T},\mathcal{R}_{λξ}\mathcal{T}^{λξ})$ Gravity

论文作者

Sharif, M, Naseer, T

论文摘要

在本文中,我们考虑静态的自我修复球形时段,并通过$ f(\ Mathcal {r},\ Mathcal {t},\ Mathcal {t},\ Mathcal {r} _ {r} _ {Λ{λξ} \ Mathcal Calcal {它们上的电磁场。我们通过在径向和时间度量电位上使用转换来构建两组修改的场方程。第一组象征着各向同性流体分布,因此我们采用Krori-Barua解决方案来处理它。不确定的第二部门包括各向异性的影响。在这方面,我们应用一些约束来确定未知数。此外,我们观察到电荷以及解耦参数$ζ$对发达的物理变量(例如能量密度,〜径向和切向压力)和各向异性的影响。我们还分析了紧凑的几何形状的其他物理特征,例如质量,紧凑性和红移以及能量条件。最终,我们发现我们的两种溶液在此重力中的边界附近的较高电荷值表现出较不稳定的行为。

In this paper, we consider static self-gravitating spherical spacetime and determine various anisotropic solutions through the extended gravitational decoupling technique in $f(\mathcal{R},\mathcal{T},\mathcal{R}_{λξ}\mathcal{T}^{λξ})$ gravity to analyze the influence of electromagnetic field on them. We construct two different sets of modified field equations by employing the transformations on both radial as well as temporal metric potentials. The first set symbolizes the isotropic fluid distribution, thus we take Krori-Barua solution to deal with it. The indefinite second sector comprises the influence of anisotropy. In this regard, we apply some constraints to determine unknowns. Further, we observe the impact of charge as well as decoupling parameter $ζ$ on the developed physical variables (such as energy density,~radial and tangential pressures) and anisotropy. We also analyze other physical features of the compact geometry like mass, compactness and redshift along with the energy conditions. Eventually, we find that our both solutions show less stable behavior for higher values of charge near the boundary in this gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源