论文标题

复杂的双曲四肢中的叶状Hopf Hyperfaces

Foliated Hopf hypersurfaces in complex hyperbolic quadrics

论文作者

Berndt, Jurgen

论文摘要

本文涉及由接触几何学动机的限制案例。 Kahler歧管中接触性超曲面的紧张表征的限制情况导致Hopf Hypersurfaces,其最大的切线束的最大复杂分支是可以集成的。众所周知,在非平台复杂空间形式和复杂的四核中,这种真实的超曲面不存在,但是其他不可约的卡勒歧管中存在的存在问题是开放的。在本文中,我们明确地构建了一个均匀的Hopf Hyperfaces的单参数家族,其最大的切线捆绑包是可集成的,在非紧凑型类型和排名第二。这些是不可证实的卡勒歧管中这种真实超曲面的第一个已知例子。

This paper deals with a limiting case motivated by contact geometry. The limiting case of a tensorial characterization of contact hypersurfaces in Kahler manifolds leads to Hopf hypersurfaces whose maximal complex subbundle of the tangent bundle is integrable. It is known that in non-flat complex space forms and in complex quadrics such real hypersurfaces do not exist, but the existence problem in other irreducible Kahler manifolds is open. In this paper we construct explicitly a one-parameter family of homogeneous Hopf hypersurfaces, whose maximal complex subbundle of the tangent bundle is integrable, in a Hermitian symmetric space of non-compact type and rank two. These are the first known examples of such real hypersurfaces in irreducible Kahler manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源