论文标题

Cesáro的条件,用于平坦的伪曲片中的曲线

Cesáro condition for curves in the flat pseudo-hermitian manifolds

论文作者

Huang, Yen-Chang

论文摘要

通过将三维Heisenberg组$ \ Mathbb {H} _1 $作为伪 - - 雷米特歧管的平坦模型,[8]中的作者得出了frenet-serret公式的曲线,以$ \ m m i \ m mathbb {h} _1 $ $。在此注释中,我们显示了Frenet-Serret公式的三个应用。首先是Cesáro固定条件,该条件提供了在给定的旋转对称表面中包含的曲线标准。其次,我们表明任何水平的规则曲线都是Bertrand曲线,并给出这些曲线的所有特征。最终应用是曲线的分类,具体取决于曲线的位置向量是否位于其任何对单位切线,正常和二手矢量跨越的平面上。

By considering the three dimensional Heisenberg group $\mathbb{H}_1$ as a flat model of pseudo-hermitian manifolds, the authors in [8] derived the Frenet-Serret formulas for curves in $\mathbb{H}_1$. In this notes we show three applications of the Frenet-Serret formulas. The first is the Cesáro immobility condition, which provides the criterion of curves being contained in a given rotationally symmetric surface. Secondly, we show that any horizontally regular curve is a Bertrand curve, and give all characterizations of those curves. The final application is a classification of curves depending on whether the position vector of the curve lies on the planes spanned by any pair of its unit tangent, normal, and binormal vectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源