论文标题
$ c^*$ - 代数的操作员$ k $ - 理论代数光谱
Operator $K$-theory algebra spectra of $C^*$-algebras
论文作者
论文摘要
我们构建了代表运算符$ k $ $ c^*$ - 代数的$ k $理论的交换代数光谱,它们是代表拓扑$ k $ - 理论的换向环光谱的代数。频谱乘法结构在$ k $ groups上引入了一个新的分级通勤环结构,从而推广了众所周知的交换$ c^*$ - 代数的分级环结构。最后一个结构反映了通过Gelfand二元性,Swan的定理和纤维张量产品的拓扑结构。 我们介绍了$ \ mathscr l $ - 渗透类别,这是对双层类别的概括,它们是由线性异构体oparad的相干作用引起的乘法结构的置换类别。感兴趣的示例的主要类别是其对象的投影矩阵的稳定性的投影矩阵$ \ wideTilde {\ mathfrak {\ mathfrak {ka}} $ a $ c^*$ - 代数 - 代数 - ngebras $ \ mathfrak a $ a $ a $,以及形态的部分isometials partial isometials soptial isotial soptial isotial neumann neumann-von neumann-von neumann niumann niumann rientation。 然后,我们通过调整适用于双层类别的通常方法来构造它们中的$ e_ \ infty $ - 环。识别原理的良好函数,同质的增强理想和在Bott元素上的本地化,然后为我们提供了代数光谱。
We construct commutative algebra spectra that represent the operator $K$-theory of $C^*$-algebras, which are algebras over the commutative ring spectra that represent topological $K$-theory. The spectral multiplicative structure introduces a new graded commutative ring structure on the $K$-groups, generalizing the well-known graded ring structure of commutative $C^*$-algebras. This last structure reflects the multiplicative structure of topological $K$-theory via Gelfand duality, Swan's theorem and the fiber tensor product. We introduce $\mathscr L$-permutative categories, a generalization of bipermutative categories, which are permutative categories equipped with a multiplicative structures induced by coherent actions of the linear isometries operad. The main class of examples of interest are categories whose objects are projection matrices of the unitization of the stabilizations $\widetilde{\mathfrak{KA}}$ of a $C^*$-algebras $\mathfrak A$, and morphisms partial isometries witnessing the Murray-von Neumann relation. We then construct $E_\infty$-ring spaces out of them by adapting the usual method applied to bipermutative categories. The delooping functor of the recognition principle, the homotopical augmentation ideal and localization at the Bott element then give us our algebra spectra.