论文标题

在气盘盘中扩散压力颠簸会使行星通过行星涡流互动迁移而停滞不前

Spreading pressure bumps in gas-dust discs can stall planet migration via planet-vortex interactions

论文作者

Chametla, R. O., Chrenko, O.

论文摘要

我们研究了低至中间质量行星($ m_p \ in [0.06-210] \,m _ {\ oplus} $)和两个先前形成的在气粉粉状protoplanetary盘中的压力凸起之间的重力相互作用。我们探讨了由于行星引起的扰动而引起的光盘结构如何变化,以及涡流的外观如何影响行星迁移。我们使用多流体2D流体动力学模拟,并在无压力流体近似中处理灰尘,假设单个晶粒大小为$ 5 \,μ{\ mathrm {m {m}} $。最新观察到原星盘HD163296的最新表面密度曲线是动机的。当允许行星迁移时,从每个压力最大的外部压力或两个行星中的一个行星都要迅速扩散,并合并成一个径向宽,幅度非常低的单个凸起。圆盘材料的重新分布伴随着Rossby Wave不稳定性(RWI)和在短时间内合并以形成大涡流的迷你涡流的外观。大型涡流会以螺旋波模式引起扰动,该螺旋波模式随着密度波的范围而远离涡流。 We found that these vortex-induced spiral waves strongly interact with the spiral waves generated by the planet and we called this mechanism the "\textit{Faraway Interaction}".它促进了行星的较慢和/或停滞的迁移,在某些情况下会激发其轨道偏心。我们的研究提供了一个新的解释,说明岩石行星如何在发生涡流形成的原星盘中缓慢迁移。

We investigate the gravitational interaction between low- to intermediate-mass planets ($M_p \in[0.06-210]\,M_{\oplus}$) and two previously formed pressure bumps in a gas-dust protoplanetary disc. We explore how the disc structure changes due to planet-induced perturbations and also how the appearance of vortices affects planet migration. We use multifluid 2D hydrodynamical simulations and the dust is treated in the pressureless-fluid approximation, assuming a single grain size of $5\,μ{\mathrm{m}}$. The initial surface density profiles containing two bumps are motivated by recent observations of the protoplanetary disc HD163296. When planets are allowed to migrate, either a single planet from the outer pressure maximum or two planets from each pressure maximum, the initial pressure bumps quickly spread and merge into a single bump which is radially wide and has a very low amplitude. The redistribution of the disc material is accompanied by the Rossby Wave Instability (RWI) and an appearance of mini-vortices that merge in a short period of time to form a large vortex. The large vortex induces perturbations with a spiral wave pattern that propagate away from the vortex as density waves. We found that these vortex-induced spiral waves strongly interact with the spiral waves generated by the planet and we called this mechanism the "\textit{Faraway Interaction}". It facilitates much slower and/or stagnant migration of the planets and it excites their orbital eccentricities in some cases. Our study provides a new explanation for how rocky planets can come to have a slow migration in protoplanetary discs where vortex formation occurs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源