论文标题
对R-Stable Kneser HyperGraphs的色度数量的猜想的反例
A counterexample to a conjecture on the chromatic number of r-stable Kneser hypergraphs
论文作者
论文摘要
本注释的主要目的是对以下猜想进行反例,该猜想由Florian Frick [\ textit {int。数学。 res。不是。 IMRN 2020(13),4037-4061(2020)}]。 推测。令$ r \ geq 3 $,然后让$ \ Mathcal {f} $为设置系统。然后 $χ\ left(\ textrm {kg}^r \ left(\ mathcal {f} _ {r-stab} \ right)\ right)\ geq \ geq \ le feled \ left \ lceil \ frac {cd_r \ frac {cd_r \ left(cd_r \ left)
The main purpose of this note is to give a counterexample to the following conjecture, raised by Florian Frick [\textit{Int. Math. Res. Not. IMRN 2020 (13), 4037-4061 (2020)}]. Conjecture. Let $r\geq 3$ and let $\mathcal{F}$ be a set system. Then $$χ\left(\textrm{KG}^r\left(\mathcal{F}_{r-stab}\right)\right)\geq\left\lceil\frac{cd_r\left(\mathcal{F}\right)}{r-1}\right\rceil.$$