论文标题

在三角形列表分配中

On triangle-free list assignments

论文作者

Przybyło, Jakub

论文摘要

我们表明,伯恩斯泰恩(Bernshteyn)证明了Molloy的突破性结果,即可以从尺寸$ $ $ $(1+O(1))Δ/\logδ$的列表中选择无三角形的图表,可以改编以产生更强的结果。特别是,只要在其列表中共享常见颜色的顶点不会引起$ g $中的三角形,这可能证明这种列表尺寸足以为任何最高度$δ$的图形上色$δ$,这涵盖了Molloy定理所涵盖的所有案例。到目前为止,这对于大小$ $(1000+O(1))Δ/\logδ$的列表所知,这是正确的,这意味着由于Amini和Reed而引起的更一般的结果。我们还证明,如果一个人用$ r \ geq 4 $替换了任何$ k_r $,则长度$ 2(r-2)δ\log_2Δ/\log_2Δ/\log_2Δ$就足够了,也将略微稍微推送出Bernshteyn的结果$ 200R $的$ r \ geq 4 $。在对应着色的更通用的环境中,呈现的所有界限也有效。

We show that Bernshteyn's proof of the breakthrough result of Molloy that triangle-free graphs are choosable from lists of size $(1+o(1))Δ/\logΔ$ can be adapted to yield a stronger result. In particular one may prove that such list sizes are sufficient to colour any graph of maximum degree $Δ$ provided that vertices sharing a common colour in their lists do not induce a triangle in $G$, which encompasses all cases covered by Molloy's theorem. This was thus far known to be true for lists of size $(1000+o(1))Δ/\logΔ$, as implies a more general result due to Amini and Reed. We also prove that lists of length $2(r-2)Δ\log_2\log_2Δ/\log_2Δ$ are sufficient if one replaces the triangle by any $K_r$ with $r\geq 4$, pushing also slightly the multiplicative factor of $200r$ from Bernshteyn's result down to $2(r-2)$. All bounds presented are also valid within the more general setting of correspondence colourings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源