论文标题

从显微镜图像中检测寄生卵和新数据集的出现

Detection of Parasitic Eggs from Microscopy Images and the emergence of a new dataset

论文作者

Mayo, Perla, Anantrasirichai, Nantheera, Chalidabhongse, Thanarat H., Palasuwan, Duangdao, Achim, Alin

论文摘要

显微镜图像中寄生卵的自动检测有可能提高人类专家的效率,同时还提供了客观评估。这样的过程节省的时间既有助于确保对患者进行迅速治疗,又有助于从专家肩膀上卸载过多的工作。深度学习的进步激发了我们利用成功的架构进行检测,以适应它们以应对另一个领域。我们提出了一个利用两个这样最新模型的框架。具体而言,我们证明了生成对抗网络(GAN)和更快的RCNN产生的结果,分别是在不同质量的显微镜图像上进行图像增强和对象检测产生的结果。这些技术的使用产生了令人鼓舞的结果,尽管对于某些鸡蛋类型仍需要进一步的改进,这些卵类型仍然证明具有挑战性。结果,已经创建了一个新的数据集并公开可用,提供了更广泛的类和可变性。

Automatic detection of parasitic eggs in microscopy images has the potential to increase the efficiency of human experts whilst also providing an objective assessment. The time saved by such a process would both help ensure a prompt treatment to patients, and off-load excessive work from experts' shoulders. Advances in deep learning inspired us to exploit successful architectures for detection, adapting them to tackle a different domain. We propose a framework that exploits two such state-of-the-art models. Specifically, we demonstrate results produced by both a Generative Adversarial Network (GAN) and Faster-RCNN, for image enhancement and object detection respectively, on microscopy images of varying quality. The use of these techniques yields encouraging results, though further improvements are still needed for certain egg types whose detection still proves challenging. As a result, a new dataset has been created and made publicly available, providing an even wider range of classes and variability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源