论文标题

Geodiff:分子构象产生的几何扩散模型

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation

论文作者

Xu, Minkai, Yu, Lantao, Song, Yang, Shi, Chence, Ermon, Stefano, Tang, Jian

论文摘要

从分子图预测分子构象是化学信息和药物发现中的一个基本问题。最近,通过机器学习方法,尤其是深层生成模型,取得了重大进展。受经典非平衡热力学的扩散过程的启发,其中加热颗粒将从原始状态扩散到噪声分布,在本文中,我们提出了一种新型生成模型,称为分子构象预测的Geodiff。 Geodiff将每个原子视为一个粒子,并学会直接扭转扩散过程(即从噪声分布转换为稳定构象)成一个Markov链。但是,建模这样的一代过程非常具有挑战性,因为构象的可能性应该是旋转的变换不变的。从理论上讲,我们表明,马尔可夫连锁链以均等马尔可夫内核而发展,可以通过设计引起不变的分布,并进一步为马尔可夫内核提供了构建块,以保留所需的均值属性。可以通过优化与(条件)可能性的加权变异下部结合来以端到端方式进行有效训练。多个基准测试的实验表明,地理夫与现有的最新方法相当,尤其是在大分子上。

Predicting molecular conformations from molecular graphs is a fundamental problem in cheminformatics and drug discovery. Recently, significant progress has been achieved with machine learning approaches, especially with deep generative models. Inspired by the diffusion process in classical non-equilibrium thermodynamics where heated particles will diffuse from original states to a noise distribution, in this paper, we propose a novel generative model named GeoDiff for molecular conformation prediction. GeoDiff treats each atom as a particle and learns to directly reverse the diffusion process (i.e., transforming from a noise distribution to stable conformations) as a Markov chain. Modeling such a generation process is however very challenging as the likelihood of conformations should be roto-translational invariant. We theoretically show that Markov chains evolving with equivariant Markov kernels can induce an invariant distribution by design, and further propose building blocks for the Markov kernels to preserve the desirable equivariance property. The whole framework can be efficiently trained in an end-to-end fashion by optimizing a weighted variational lower bound to the (conditional) likelihood. Experiments on multiple benchmarks show that GeoDiff is superior or comparable to existing state-of-the-art approaches, especially on large molecules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源