论文标题
图形神经网络增强语言模型,用于有效的多语言文本分类
Graph Neural Network Enhanced Language Models for Efficient Multilingual Text Classification
论文作者
论文摘要
在线社交媒体是灾难期间各种有价值和可操作的信息的来源。由于用户生成的内容的性质,这些信息可能以多种语言提供。自动识别和分类这些可操作信息的有效系统应能够处理多种语言并在有限的监督下。但是,现有的作品主要仅针对英语,只有可以使用足够标记的数据的假设。为了克服这些挑战,我们提出了一个多语言与灾难相关的文本分类系统,该系统能够在\ {Mono,Cross和Multi \}语言方案以及有限的监督下工作。我们的端到端可训练框架通过在语料库上运用图形神经网络的多功能性,以及基于变形金刚的大语言模型的力量,在示例中,在两者之间的跨注意方面。我们在\ {Mono,Cross和Multi \}舌头分类方案中评估了总共九个英语,非英语和单语数据集的框架。在加权f $ _1 $得分方面,我们的框架在灾难域和多语言BERT基线中的最先进模型优于最先进的模型。我们还在有限的监督下显示了拟议模型的普遍性。
Online social media works as a source of various valuable and actionable information during disasters. These information might be available in multiple languages due to the nature of user generated content. An effective system to automatically identify and categorize these actionable information should be capable to handle multiple languages and under limited supervision. However, existing works mostly focus on English language only with the assumption that sufficient labeled data is available. To overcome these challenges, we propose a multilingual disaster related text classification system which is capable to work under \{mono, cross and multi\} lingual scenarios and under limited supervision. Our end-to-end trainable framework combines the versatility of graph neural networks, by applying over the corpus, with the power of transformer based large language models, over examples, with the help of cross-attention between the two. We evaluate our framework over total nine English, Non-English and monolingual datasets in \{mono, cross and multi\} lingual classification scenarios. Our framework outperforms state-of-the-art models in disaster domain and multilingual BERT baseline in terms of Weighted F$_1$ score. We also show the generalizability of the proposed model under limited supervision.