论文标题

用Vit-Patch Gan进行染色体拉直的强大框架

A Robust Framework of Chromosome Straightening with ViT-Patch GAN

论文作者

Song, Sifan, Wang, Jinfeng, Cheng, Fengrui, Cao, Qirui, Zuo, Yihan, Lei, Yongteng, Yang, Ruomai, Yang, Chunxiao, Coenen, Frans, Meng, Jia, Dang, Kang, Su, Jionglong

论文摘要

染色体携带人类的遗传信息。它们具有不同程度的曲率,表现出非刚性和非明显的性质。染色体拉直是随后的核型结构,病理诊断和细胞遗传学图的发展的重要步骤。然而,由于训练图像,矫直后的染色体细节和形状不足以及概括能力差,稳健的染色体拉直呈挑战性。在本文中,我们提出了一种新型的体系结构,即Vit-Patch Gan,由自我学习的运动变换发生器和基于视觉变压器的贴片(VIT-PATCH)判别器组成。发电机了解染色体的运动表示,以进行拉直。借助VIT-PATCHINGINATOR,拉直的染色体保留了更多的形状和带模式的细节。实验结果表明,所提出的方法在FréchetInception距离(FID),学习的感知图像贴片相似性(LPIPS)和下游染色体分类精度上实现了更好的性能,并且在大型数据集上显示出极好的概括能力。

Chromosomes carry the genetic information of humans. They exhibit non-rigid and non-articulated nature with varying degrees of curvature. Chromosome straightening is an important step for subsequent karyotype construction, pathological diagnosis and cytogenetic map development. However, robust chromosome straightening remains challenging, due to the unavailability of training images, distorted chromosome details and shapes after straightening, as well as poor generalization capability. In this paper, we propose a novel architecture, ViT-Patch GAN, consisting of a self-learned motion transformation generator and a Vision Transformer-based patch (ViT-Patch) discriminator. The generator learns the motion representation of chromosomes for straightening. With the help of the ViT-Patch discriminator, the straightened chromosomes retain more shape and banding pattern details. The experimental results show that the proposed method achieves better performance on Fréchet Inception Distance (FID), Learned Perceptual Image Patch Similarity (LPIPS) and downstream chromosome classification accuracy, and shows excellent generalization capability on a large dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源