论文标题
递归蒙特卡洛和带有辅助变量的变异推理
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
论文作者
论文摘要
在实施蒙特卡洛和变异推理算法时,一个关键的设计限制是,必须廉价地准确地评估提案分布和变异家庭的边际密度。这取出了许多有趣的建议,例如基于涉及的模拟或随机优化的建议。本文通过提出一个用于应用蒙特卡洛和变异推理算法的框架来扩大设计空间,当提案密度无法精确评估时。我们的框架,递归的辅助变量推理(RAVI),使用元推断近似必要的密度:另一个蒙特卡洛或变分推断的层,该层是针对提案而不是模型的。 Ravi概括并统一了几种与表达性近似家庭推断的现有方法,我们显示的对应于元推理算法的特定选择,并提供了分析其偏见和方差的新理论。我们通过使用它们来分析和改进Salimans等人的Markov链变异推理,并为Dirichlet过程混合物设计新颖的采样器来说明RAVI的设计框架和定理。
A key design constraint when implementing Monte Carlo and variational inference algorithms is that it must be possible to cheaply and exactly evaluate the marginal densities of proposal distributions and variational families. This takes many interesting proposals off the table, such as those based on involved simulations or stochastic optimization. This paper broadens the design space, by presenting a framework for applying Monte Carlo and variational inference algorithms when proposal densities cannot be exactly evaluated. Our framework, recursive auxiliary-variable inference (RAVI), instead approximates the necessary densities using meta-inference: an additional layer of Monte Carlo or variational inference, that targets the proposal, rather than the model. RAVI generalizes and unifies several existing methods for inference with expressive approximating families, which we show correspond to specific choices of meta-inference algorithm, and provides new theory for analyzing their bias and variance. We illustrate RAVI's design framework and theorems by using them to analyze and improve upon Salimans et al.'s Markov Chain Variational Inference, and to design a novel sampler for Dirichlet process mixtures, achieving state-of-the-art results on a standard benchmark dataset from astronomy and on a challenging datacleaning task with Medicare hospital data.