论文标题

评估DIRICHLET过程高斯混合物,以分割嘈杂的高光谱图像

Evaluation of Dirichlet Process Gaussian Mixtures for Segmentation on Noisy Hyperspectral Images

论文作者

Mantripragada, Kiran, Qureshi, Faisal Z.

论文摘要

图像分割是解释遥感图像的基本步骤。聚类或分割方法通常在分类任务之前,用作手动标记的支持工具。最常见的算法,例如K-均值,平均移位和MRS,需要一个额外的手动步骤才能找到比例参数。如果参数未正确调整并与最佳值不同,则分割结果会严重影响。此外,对最佳量表的搜索是一项昂贵的任务,因为它需要全面的超参数搜索。本文提出并评估了使用Dirichlet工艺高斯混合模型分割高光谱图像的方法。我们的模型可以自我调节参数,直到找到比例的最佳值和给定数据集中的簇数。结果证明了我们方法在高光谱图像中找到对象的潜力,同时绕过了对最佳参数的手动搜索负担。此外,我们的模型在嘈杂的数据集上还产生了相似的结果,而先前的研究通常需要进行预处理任务,以减少降噪和光谱平滑。

Image segmentation is a fundamental step for the interpretation of Remote Sensing Images. Clustering or segmentation methods usually precede the classification task and are used as support tools for manual labeling. The most common algorithms, such as k-means, mean-shift, and MRS, require an extra manual step to find the scale parameter. The segmentation results are severely affected if the parameters are not correctly tuned and diverge from the optimal values. Additionally, the search for the optimal scale is a costly task, as it requires a comprehensive hyper-parameter search. This paper proposes and evaluates a method for segmentation of Hyperspectral Images using the Dirichlet Process Gaussian Mixture Model. Our model can self-regulate the parameters until it finds the optimal values of scale and the number of clusters in a given dataset. The results demonstrate the potential of our method to find objects in a Hyperspectral Image while bypassing the burden of manual search of the optimal parameters. In addition, our model also produces similar results on noisy datasets, while previous research usually required a pre-processing task for noise reduction and spectral smoothing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源