论文标题

Flurry:一个快速可再现的多层出处图形表示学习的框架

Flurry: a Fast Framework for Reproducible Multi-layered Provenance Graph Representation Learning

论文作者

Kapoor, Maya, Melton, Joshua, Ridenhour, Michael, Sriram, Mahalavanya, Moyer, Thomas, Krishnan, Siddharth

论文摘要

复杂的异质动态网络(如知识图)是强大的构造,可用于从计算机系统中建模数据出处。从安全的角度来看,这些归因于图表可以使因果关系分析和追踪以分析无数的网络攻击。但是,管道系统的系统开发很少,该管道的系统开发将系统执行和出处转化为机器学习任务的可用图表。缺乏仪器,严重抑制了在出处绘图机器学习方面的科学进步,通过阻碍可重复性并限制对图神经网络等技术至关重要的数据的可用性。为了满足这一需求,我们提出Flurry是一种端到端的数据管道,该数据管道模拟了网络攻击,捕获了这些攻击中的出处数据,从多个系统和应用程序层中捕获了这些攻击,将这些攻击中的审计日志转换为数据出处图形,并将这些数据与培训的框架结合在一起,用于培训深层神经模型,以支持预先启用或定制的模型,用于分析现实的系统。我们通过使用当前基准图表示学习框架从多个系统攻击中处理数据并通过图形分类来展示该管道。 Flurry提供了一种快速,可定制,可扩展和透明的解决方案,以向网络安全专业人员提供这些急需的数据。

Complex heterogeneous dynamic networks like knowledge graphs are powerful constructs that can be used in modeling data provenance from computer systems. From a security perspective, these attributed graphs enable causality analysis and tracing for analyzing a myriad of cyberattacks. However, there is a paucity in systematic development of pipelines that transform system executions and provenance into usable graph representations for machine learning tasks. This lack of instrumentation severely inhibits scientific advancement in provenance graph machine learning by hindering reproducibility and limiting the availability of data that are critical for techniques like graph neural networks. To fulfill this need, we present Flurry, an end-to-end data pipeline which simulates cyberattacks, captures provenance data from these attacks at multiple system and application layers, converts audit logs from these attacks into data provenance graphs, and incorporates this data with a framework for training deep neural models that supports preconfigured or custom-designed models for analysis in real-world resilient systems. We showcase this pipeline by processing data from multiple system attacks and performing anomaly detection via graph classification using current benchmark graph representational learning frameworks. Flurry provides a fast, customizable, extensible, and transparent solution for providing this much needed data to cybersecurity professionals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源