论文标题
分析完全离散的近似与移动边界问题,描述暴露于扩散剂的橡胶
Analysis of a fully discrete approximation to a moving-boundary problem describing rubber exposed to diffusants
论文作者
论文摘要
我们提出了一个完全分散的方案,用于描述扩散剂穿透橡胶的移动边界问题的数值近似。我们的方案利用Galerkin有限元方法进行空间离散化与后退Euler方法相结合,以进行时间离散化。除了处理完全离散问题的解决方案的存在和唯一性外,我们还得出了a \ textIt {a先验}差异估计,分别是扩散剂的质量浓度,以及移动边界的位置。数值插图验证了物理参数制度中收敛的理论顺序。
We present a fully discrete scheme for the numerical approximation of a moving-boundary problem describing diffusants penetration into rubber. Our scheme utilizes the Galerkin finite element method for the space discretization combined with the backward Euler method for the time discretization. Besides dealing with the existence and uniqueness of solution to the fully discrete problem, we derive a \textit{a priori} error estimate for the mass concentration of the diffusants, and respectively, for the position of the moving boundary. Numerical illustrations verify the obtained theoretical order of convergence in physical parameter regimes.