论文标题
深度部分多重网络嵌入
Deep Partial Multiplex Network Embedding
论文作者
论文摘要
网络嵌入是一种学习网络中节点的低维表示的有效技术。现实世界网络通常具有多重关系或具有来自不同关系的多视图表示。最近,对网络嵌入多重数据的兴趣越来越多。但是,大多数现有的多重方法都假定所有视图中的数据均已完成。但是在实际应用中,通常每个视图都遇到了某些数据的缺失,因此会导致部分多重数据。在本文中,我们提出了一种新型的深层部分多重网络嵌入方法来处理不完整的数据。特别是,通过同时将自动编码器神经网络的深层重建损失最大程度地降至最低,通过公共潜在的子空间学习来实现跨视图的数据一致性,并通过Graph Laplacian来保留同一网络中的数据拓扑结构。我们进一步证明了学到的嵌入的正交不变属性,并将我们的方法与二进制嵌入技术联系起来。在四个多重基准上进行的实验证明了所提出的方法的出色性能,而不是在节点分类,链接预测和聚类任务上的几种最新方法。
Network embedding is an effective technique to learn the low-dimensional representations of nodes in networks. Real-world networks are usually with multiplex or having multi-view representations from different relations. Recently, there has been increasing interest in network embedding on multiplex data. However, most existing multiplex approaches assume that the data is complete in all views. But in real applications, it is often the case that each view suffers from the missing of some data and therefore results in partial multiplex data. In this paper, we present a novel Deep Partial Multiplex Network Embedding approach to deal with incomplete data. In particular, the network embeddings are learned by simultaneously minimizing the deep reconstruction loss with the autoencoder neural network, enforcing the data consistency across views via common latent subspace learning, and preserving the data topological structure within the same network through graph Laplacian. We further prove the orthogonal invariant property of the learned embeddings and connect our approach with the binary embedding techniques. Experiments on four multiplex benchmarks demonstrate the superior performance of the proposed approach over several state-of-the-art methods on node classification, link prediction and clustering tasks.