论文标题

根据图表的叶子数估计图的圆周

Estimating the circumference of a graph in terms of its leaf number

论文作者

Yan, Jingru

论文摘要

令$ \ mathcal {t} $为$ g $的一组生成树,让$ l(t)$为树$ t $中的叶子数。 $ g $的叶数$ l(g)$定义为$ l(g)= \ max \ {l(t)| t \ in \ Mathcal {t} \} $。令$ g $为订单$ n $和最低度$δ$的连接图,以便$ l(g)\ leq2δ-1$。我们表明,$ g $的周长至少是$ n-1 $,如果$ g $是常规的,那么$ g $是汉密尔顿人。

Let $\mathcal{T}$ be the set of spanning trees of $G$ and let $L(T)$ be the number of leaves in a tree $T$. The leaf number $L(G)$ of $G$ is defined as $L(G)=\max\{L(T)|T\in \mathcal{T}\}$. Let $G$ be a connected graph of order $n$ and minimum degree $δ$ such that $L(G)\leq 2δ-1$. We show that the circumference of $G$ is at least $n-1$, and that if $G$ is regular then $G$ is hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源