论文标题

基于视觉的分布式分布式多UAV碰撞避免通过深度加固学习进行导航

Vision-based Distributed Multi-UAV Collision Avoidance via Deep Reinforcement Learning for Navigation

论文作者

Huang, Huaxing, Zhu, Guijie, Fan, Zhun, Zhai, Hao, Cai, Yuwei, Shi, Ze, Dong, Zhaohui, Hao, Zhifeng

论文摘要

多个无人驾驶汽车(Multi-UAV)系统的在线路径计划被认为是一项具有挑战性的任务。它需要确保实时无碰撞的路径计划,尤其是当多个场合在某些情况下变得非常拥挤时。在本文中,我们介绍了针对多UAV系统的基于视觉的去中心化避免碰撞策略,该政策将深度图像和惯性测量作为感觉输入和输出无人机的转向命令。使用基于策略梯度的强化学习算法和自动编码器在多uav三二维工作区中,该策略与深度图像的潜在表示培训。每个无人机都遵循相同的训练政策,并独立采取行动以实现目标,而无需与其他无人机进行冲突或沟通。我们在各种模拟方案中验证我们的政策。实验结果表明,我们学到的政策可以保证在三维工作区中具有良好稳定性和可扩展性的三维工作空间中完全无自动碰撞的导航。

Online path planning for multiple unmanned aerial vehicle (multi-UAV) systems is considered a challenging task. It needs to ensure collision-free path planning in real-time, especially when the multi-UAV systems can become very crowded on certain occasions. In this paper, we presented a vision-based decentralized collision-avoidance policy for multi-UAV systems, which takes depth images and inertial measurements as sensory inputs and outputs UAV's steering commands. The policy is trained together with the latent representation of depth images using a policy gradient-based reinforcement learning algorithm and autoencoder in the multi-UAV threedimensional workspaces. Each UAV follows the same trained policy and acts independently to reach the goal without colliding or communicating with other UAVs. We validate our policy in various simulated scenarios. The experimental results show that our learned policy can guarantee fully autonomous collision-free navigation for multi-UAV in the three-dimensional workspaces with good robustness and scalability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源