论文标题
作为克决定簇
Rational solutions of Painlevé-II equation as Gram determinant
论文作者
论文摘要
在Flaschka-Newell Lax对下,Painlevé-II方程的Darboux转换是通过限制技术构建的。借助Darboux转换,有理解决方案由革兰氏危机决定归因,然后我们给出了决定因素和理性解决方案的较大$ y $渐近。最后,从Darboux矩阵获得了相应的Riemann-Hilbert问题的解决方案。
Under the Flaschka-Newell Lax pair, the Darboux transformation for the Painlevé-II equation is constructed by the limiting technique. With the aid of the Darboux transformation, the rational solutions are represented by the Gram determinant, and then we give the large $y$ asymptotics of the determinant and the rational solutions. Finally, the solution of the corresponding Riemann-Hilbert problem is obtained from the Darboux matrices.