论文标题
部分可观测时空混沌系统的无模型预测
Evolving symbolic density functionals
论文作者
论文摘要
对于科学家来说,准确的密度功能的系统开发一直是数十年来的挑战。尽管机器学习(ML)在近似功能中的新兴应用,但所得的ML功能通常包含数十万个参数,这与常规的人类设计的符号符号功能构成了巨大的差距。我们提出了一个新的框架,符号功能进化搜索(SYFES),该搜索会自动以符号形式构造准确的功能,该功能对人类更为解释,比较便宜,并且比其他ML功能更容易整合到现有的密度功能理论代码。我们首先表明,没有先验知识,Syfes从头开始重建了已知的功能。然后,我们证明,从现有的功能性$ω$ B9700万V演变,Syfes发现了一种新的功能性GAS22(Google Accelerated Science 22),在主要组化学数据库(MGCDB84)测试中,大多数分子类型的表现更好。我们的框架为利用符号密度功能的系统开发的计算能力打开了一个新的方向。
Systematic development of accurate density functionals has been a decades-long challenge for scientists. Despite the emerging application of machine learning (ML) in approximating functionals, the resulting ML functionals usually contain more than tens of thousands parameters, which makes a huge gap in the formulation with the conventional human-designed symbolic functionals. We propose a new framework, Symbolic Functional Evolutionary Search (SyFES), that automatically constructs accurate functionals in the symbolic form, which is more explainable to humans, cheaper to evaluate, and easier to integrate to existing density functional theory codes than other ML functionals. We first show that without prior knowledge, SyFES reconstructed a known functional from scratch. We then demonstrate that evolving from an existing functional $ω$B97M-V, SyFES found a new functional, GAS22 (Google Accelerated Science 22), that performs better for the majority of molecular types in the test set of Main Group Chemistry Database (MGCDB84). Our framework opens a new direction in leveraging computing power for the systematic development of symbolic density functionals.