论文标题

高转化器:用于Pansharpening的纹理和光谱融合变压器

HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening

论文作者

Bandara, Wele Gedara Chaminda, Patel, Vishal M.

论文摘要

Pansharpening旨在将注册的高分辨率全面图像(PAN)与低分辨率高光谱图像(LR-HSI)融合在一起,以生成具有高光谱和空间分辨率的增强的HSI。现有的Pansharpening方法使用注意力机制将HR纹理特征从PAN转移到LR-HSI特征,从而导致空间和光谱扭曲。在本文中,我们提出了一种称为Hyperytryformer的pansharpening的新型注意机制,其中LR-HSI和PAN的特征分别为变压器中的查询和键。高转化器由三个主要模块组成,即PAN和HSI的两个单独的特征提取器,一个多头功能软注意模块以及空间光谱特征融合模块。这样的网络通过学习跨功能空间依赖性以及PAN和LR-HSI的远距离细节来改善Pansharped HSI的空间和光谱质量度量。此外,可以在主链的多个空间尺度上使用高转化器来获得改善的性能。在三个广泛使用的数据集上进行的广泛实验表明,高转化器在空间和光谱质量测量方面的最新方法都取得了显着改善。可以在https://github.com/wgcban/hyhypertransformer上访问实施代码和预训练的权重。

Pansharpening aims to fuse a registered high-resolution panchromatic image (PAN) with a low-resolution hyperspectral image (LR-HSI) to generate an enhanced HSI with high spectral and spatial resolution. Existing pansharpening approaches neglect using an attention mechanism to transfer HR texture features from PAN to LR-HSI features, resulting in spatial and spectral distortions. In this paper, we present a novel attention mechanism for pansharpening called HyperTransformer, in which features of LR-HSI and PAN are formulated as queries and keys in a transformer, respectively. HyperTransformer consists of three main modules, namely two separate feature extractors for PAN and HSI, a multi-head feature soft attention module, and a spatial-spectral feature fusion module. Such a network improves both spatial and spectral quality measures of the pansharpened HSI by learning cross-feature space dependencies and long-range details of PAN and LR-HSI. Furthermore, HyperTransformer can be utilized across multiple spatial scales at the backbone for obtaining improved performance. Extensive experiments conducted on three widely used datasets demonstrate that HyperTransformer achieves significant improvement over the state-of-the-art methods on both spatial and spectral quality measures. Implementation code and pre-trained weights can be accessed at https://github.com/wgcban/HyperTransformer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源