论文标题

开放R-Spin不变的镜子对称性

Mirror Symmetry for open r-spin invariants

论文作者

Gross, Mark, Kelly, Tyler L., Tessler, Ran J.

论文摘要

我们表明,开放$ r $ spin枚举的生成功能会产生多项式$ x^r $的普遍展开。此外,参数化此通用展开的坐标是与Landau-Ginzburg模型$(\ Mathbb {C},X^r)$相关的Frobenius歧管上的平坦坐标。该结果提供了证据表明在续集论文中证明了相同现象在更高维度中发生的证据。

We show that a generating function for open $r$-spin enumerative invariants produces a universal unfolding of the polynomial $x^r$. Further, the coordinates parametrizing this universal unfolding are flat coordinates on the Frobenius manifold associated to the Landau-Ginzburg model $(\mathbb{C},x^r)$ via Saito-Givental theory. This result provides evidence for the same phenomenon to occur in higher dimension, proven in a sequel paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源