论文标题

使用混合2D-3D网络同时对齐和表面回归,用于3D相干层分割视网膜OCT图像

Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D Networks for 3D Coherent Layer Segmentation of Retina OCT Images

论文作者

Liu, Hong, Wei, Dong, Lu, Donghuan, Li, Yuexiang, Ma, Kai, Wang, Liansheng, Zheng, Yefeng

论文摘要

视网膜层的自动表面分割很重要,并且在分析光学相干断层扫描(OCT)方面具有挑战性。最近,已经为这项任务开发了许多基于深度学习的方法,并产生出色的性能。但是,由于OCT数据的B扫描之间的空间差距很大,并且它们都基于单个B扫描的2D分割,这可能会损失整个B型扫描的连续性信息。此外,视网膜层的3D表面可以提供更多的诊断信息,这对于定量图像分析至关重要。在这项研究中,提出了一个基于混合2d-3d卷积神经网络(CNN)的新框架,以从OCT获得连续的3D视网膜层表面。单个B扫描的2D特征是由由2D卷积组成的编码器提取的。然后,这些2D特征用于通过两个3D解码器产生对齐位移字段和层进行分割,它们通过空间变压器模块耦合。整个框架是端到端训练的。据我们所知,这是第一项基于CNN的体积OCT图像中尝试3D视网膜层分割的研究。公开可用数据集的实验表明,就图层分割精度和跨B-SCAN 3D连续性而言,我们的框架与最先进的2D方法相比,取得了优越的结果,因此比以前的工作提供了更多的临床值。

Automated surface segmentation of retinal layer is important and challenging in analyzing optical coherence tomography (OCT). Recently, many deep learning based methods have been developed for this task and yield remarkable performance. However, due to large spatial gap and potential mismatch between the B-scans of OCT data, all of them are based on 2D segmentation of individual B-scans, which may loss the continuity information across the B-scans. In addition, 3D surface of the retina layers can provide more diagnostic information, which is crucial in quantitative image analysis. In this study, a novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) is proposed to obtain continuous 3D retinal layer surfaces from OCT. The 2D features of individual B-scans are extracted by an encoder consisting of 2D convolutions. These 2D features are then used to produce the alignment displacement field and layer segmentation by two 3D decoders, which are coupled via a spatial transformer module. The entire framework is trained end-to-end. To the best of our knowledge, this is the first study that attempts 3D retinal layer segmentation in volumetric OCT images based on CNNs. Experiments on a publicly available dataset show that our framework achieves superior results to state-of-the-art 2D methods in terms of both layer segmentation accuracy and cross-B-scan 3D continuity, thus offering more clinical values than previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源