论文标题

关于具有有限的载体的扁平矢量束的较高扭转不变的评论

A remark on the higher torsion invariants for flat vector bundles with finite holonomy

论文作者

Fu, Lie, Zhang, Yeping

论文摘要

我们表明,对于任何平坦的矢量捆绑包,Igusa-klein拓扑扭转和bismut-lott分析扭转都是等效的,其固体是$ \ mathrm {gl} _n(\ mathbb {q})的有限亚组。我们的证明在表示理论中使用Artin的归纳定理将问题减少到琐碎的平面束的特殊情况下,这是Puchol,Zhu和第二作者的最新结果。使用Artin的归纳定理的想法出现在OHRT的论文中,就同一主题而言,我们目前的工作是一种改进。

We show that the Igusa-Klein topological torsion and the Bismut-Lott analytic torsion are equivalent for any flat vector bundle whose holonomy is a finite subgroup of $\mathrm{GL}_n(\mathbb{Q})$. Our proof uses Artin's induction theorem in representation theory to reduce the problem to the special case of trivial flat line bundles, which is a recent result of Puchol, Zhu and the second author. The idea of using Artin's induction theorem appeared in a paper of Ohrt on the same topic, of which our present work is an improvement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源