论文标题

潜在干预措施下的可区分因果发现

Differentiable Causal Discovery Under Latent Interventions

论文作者

Faria, Gonçalo R. A., Martins, André F. T., Figueiredo, Mário A. T.

论文摘要

最近的工作显示了通过利用基于梯度的方法利用介入数据的因果发现的有希望的结果,即使介入变量未知。但是,先前的工作假设样本与干预措施之间的对应关系是已知的,这通常是不现实的。我们设想了一个从多个干预分布和一个观察分布中取样的广泛数据集的方案,但是在我们不知道哪种分布来源的每个样本以及干预措施如何影响系统的情况下,干预完全是潜在的。我们提出了一种基于神经网络和变异推理的方法,该方法通过将其构建为在干预结构性因果模型的无限混合物(在dirichlet过程中)之间学习共享因果图来解决这种情况。合成和真实数据的实验表明,我们的方法及其半监督变体能够在这种挑战性的情况下发现因果关系。

Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown. However, previous work assumes that the correspondence between samples and interventions is known, which is often unrealistic. We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system, \textit{i.e.}, interventions are entirely latent. We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture (under a Dirichlet process prior) of intervention structural causal models. Experiments with synthetic and real data show that our approach and its semi-supervised variant are able to discover causal relations in this challenging scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源