论文标题
原子和离子分区函数的实用指南
A Practical Guide to the Partition Function of Atoms and Ions
论文作者
论文摘要
分区函数$ u $是原子或分子中可用状态的数量,对于了解热力学平衡中任何天体物理系统的物理状态至关重要。令人惊讶的是,对分区函数的数值值的讨论很少。教科书通常定义$ u $;有些给出了代表性的表格,而另一些则深入研究了密集的等离子体的理论。大多数人说,这取决于温度,原子结构,密度,并且在高温下,它变为无穷大,但很少给出实际例子。我们的目标是纠正这一点。我们表明,有两个限制,一个和两个电子(或封闭壳)的系统,例如H或HE,以及具有复杂的电子结构(例如C,N,O和Fe)的物种。在实际情况下,一个和两电子系统不会出现高温差异,因为在高温下,物种在碰撞上被电离为更高的电离阶段,并且不丰富。然后,分区函数接近基态的统计重量。许多电子物种没有这种简化。 $ u $在离子丰富但在最高的实际温度下仍然有限的温度范围内对温度敏感。实际值取决于高密度等离子体中高度不确定的截断理论。我们表明,降低连续性的理论各种理论,但它们并不符合良好的一致性。这仍然是一个长期存在的未解决问题。
The partition function, $U$, the number of available states in an atom or molecules, is crucial for understanding the physical state of any astrophysical system in thermodynamic equilibrium. There are surprisingly few {\em useful} discussions of the partition function's numerical value. Textbooks often define $U$; some give tables of representative values, while others do a deep dive into the theory of a dense plasma. Most say that it depends on temperature, atomic structure, density, and that it diverges, that is, it goes to infinity, at high temperatures, but few give practical examples. We aim to rectify this. We show that there are two limits, one and two-electron (or closed-shell) systems like H or He, and species with a complicated electronic structure like C, N, O, and Fe. The high-temperature divergence does not occur for one and two-electron systems in practical situations since, at high temperatures, species are collisionally ionized to higher ionization stages and are not abundant. The partition function is then close to the statistical weight of the ground state. There is no such simplification for many-electron species. $U$ is temperature-sensitive across the range of temperatures where an ion is abundant but remains finite at even the highest practical temperatures. The actual value depends on highly uncertain truncation theories in high-density plasmas. We show that there are various theories for continuum lowering but that they are not in good agreement. This remains a long-standing unsolved problem.