论文标题

用于近似凸屋顶的差异量子算法

A Variational Quantum Algorithm For Approximating Convex Roofs

论文作者

Androulakis, George, McGaha, Ryan

论文摘要

首先定义了许多纠缠措施,用于双方希尔伯特空间的纯状态,然后通过凸屋顶扩展到混合状态。在本文中,我们更改了纠缠措施的凸屋顶扩展,以产生一系列我们称为$ f $ - $ d $扩展的扩展,对于$ d \ in \ mathbb {n} $,其中$ f:[0,1] \ to [0,1] \ to [0,\ infty)$是固定的持续函数,仅在Zero中消失了。 We prove that for any such function $f$, and any continuous, faithful, non-negative function, (such as an entanglement measure), $μ$ on the set of pure states of a finite dimensional bipartite Hilbert space, the collection of $f$-$d$ extensions of $μ$ detects entanglement, i.e. a mixed state $ρ$ on a finite dimensional bipartite Hilbert space is separable, if而且只有存在\ Mathbb {n} $中的$ d \,因此应用于$ρ$的$ f $ - $ d $扩展名等于零。我们引入了一种量子变量算法,该算法旨在近似$ f $ - $ d $ $ d $扩展在纯状态下定义的纠缠措施。但是,该算法确实具有其缺点。我们表明,该算法用来近似$ f $ - $ d $ d $ tsallis纠缠熵的家族时表现出贫瘠的高原。实际上,如果已知有关状态的其他信息,则需要避免使用建议的安萨兹(Ansatz)进行长时间的电路。

Many entanglement measures are first defined for pure states of a bipartite Hilbert space, and then extended to mixed states via the convex roof extension. In this article we alter the convex roof extension of an entanglement measure, to produce a sequence of extensions that we call $f$-$d$ extensions, for $d \in \mathbb{N}$, where $f:[0,1]\to [0, \infty)$ is a fixed continuous function which vanishes only at zero. We prove that for any such function $f$, and any continuous, faithful, non-negative function, (such as an entanglement measure), $μ$ on the set of pure states of a finite dimensional bipartite Hilbert space, the collection of $f$-$d$ extensions of $μ$ detects entanglement, i.e. a mixed state $ρ$ on a finite dimensional bipartite Hilbert space is separable, if and only if there exists $d \in \mathbb{N}$ such that the $f$-$d$ extension of $μ$ applied to $ρ$ is equal to zero. We introduce a quantum variational algorithm which aims to approximate the $f$-$d$ extensions of entanglement measures defined on pure states. However, the algorithm does have its drawbacks. We show that this algorithm exhibits barren plateaus when used to approximate the family of $f$-$d$ extensions of the Tsallis entanglement entropy for a certain function $f$ and unitary ansatz $U(θ)$ of sufficient depth. In practice, if additional information about the state is known, then one needs to avoid using the suggested ansatz for long depth of circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源