论文标题

$ \ mathbb {f} _p $和二进制二进制形式的上椭圆形曲线的内态环

The Endomorphism Rings of Supersingular Elliptic Curves over $\mathbb{F}_p$ and the Binary Quadratic Forms

论文作者

Xiao, Guanju, Zhou, Zijian, Deng, Yingpu, Qu, Longjiang

论文摘要

众所周知,在$ \ text {gal}(\ Mathbb {f} _ {p^2}/\ mathbb {f} _p)_p {p^2}/\ mathbb {f} _p)$和最大级别类型的$ b _ {p p p p,p,p,f,f,f,f,f,ift ifty}中。有趣的是,我们在$ \ mathbb {f} _p $ -isomorphism类之间建立了一对一的对应关系,用于超级椭圆曲线的类别和带有判别$ -P $或$ -16p $的原始减少二进制二进制形式。由于这种对应关系以及椭圆形曲线之间的$ \ mathbb {f} _p $ - 异生,可以用二次形式表示,我们表明,这些同等基因在$ \ mathbb {f} _p $上与Quadrats形式的组成兼容。基于这些结果,我们可以将CSIDH密码系统的安全性降低到明确计算此通信的安全性。

It is well known that there is a one-to-one correspondence between supersingular $j$-invariants up to the action of $\text{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)$ and type classes of maximal orders in $B_{p,\infty}$ by Deuring's theorem. Interestingly, we establish a one-to-one correspondence between $\mathbb{F}_p$-isomorphism classes of supersingular elliptic curves and primitive reduced binary quadratic forms with discriminant $-p$ or $-16p$. Due to this correspondence and the fact that $\mathbb{F}_p$-isogenies between elliptic curves could be represented by quadratic forms, we show that operations of these isogenies on supersingular elliptic curves over $\mathbb{F}_p$ are compatible with the composition of quadratic forms. Based on these results, we could reduce the security of CSIDH cryptosystem to computing this correspondence explicitly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源