论文标题
在减少对流模型的层次结构中的热传输
Heat transport in a hierarchy of reduced-order convection models
论文作者
论文摘要
还原阶模型(ROM)是旨在近似部分微分方程(PDE)动力学的普通微分方程(ODE)的系统。在这项工作中,ROM的杰出层次结构是为雷利(Rayleigh)1916年的自然热对流模型而建造的。这些模型的区分是,它们可以保留从管理方程式得出的能量和涡度平衡,并且每个模型都能对区域流进行建模。分析了层次结构的各种模型,以确定给定模型中的最大热传输,该模型以无量纲的努塞尔数量测量,对于给定的瑞利数字。通过使用数值延续来计算所选模型的平衡中的Nusselt数来确定最大热传输的下限。一种被称为平方之和优化的方法用于在时间平均的Nusselt数字上构建上限。在这种情况下,平方的总和方法涉及构建多项式数量,其全局非负性意味着沿所有解决方案的上限。最小限制是通过称为半芬矿编程的一种凸优化确定的。对于这项工作中研究的ROMS,每当雷利号足够小时,努塞尔特的数字就会通过平衡最大化。在这个雷利数字的范围内,最大化热传输的平衡是从零状态下分叉的。分析此主要平衡分支为对流发作附近的热运输增加提供了一种可能的机制。
Reduced-order models (ROMs) are systems of ordinary differential equations (ODEs) designed to approximate the dynamics of partial differential equations (PDEs). In this work, a distinguished hierarchy of ROMs is constructed for Rayleigh's 1916 model of natural thermal convection. These models are distinguished in the sense that they preserve energy and vorticity balances derived from the governing equations, and each is capable of modeling zonal flow. Various models from the hierarchy are analyzed to determine the maximal heat transport in a given model, measured by the dimensionless Nusselt number, for a given Rayleigh number. Lower bounds on the maximal heat transport are ascertained by computing the Nusselt number among equilibria of the chosen model using numerical continuation. A method known as sum-of-squares optimization is applied to construct upper bounds on the time-averaged Nusselt number. In this case, the sum-of-squares approach involves constructing a polynomial quantity whose global nonnegativity implies the upper bound along all solutions to a chosen ROM. The minimum such bound is determined through a type of convex optimization called semidefinite programming. For the ROMs studied in this work, the Nusselt number is maximized by equilibria whenever the Rayleigh number is sufficiently small. In this range of Rayleigh number, the equilibria maximizing heat transport are those that bifurcate first from the zero state. Analyzing this primary equilibrium branch provides a possible mechanism for the increase in heat transport near the onset of convection.