论文标题

时间上下文问题:通过疾病进展表示增强单图预测

Temporal Context Matters: Enhancing Single Image Prediction with Disease Progression Representations

论文作者

Konwer, Aishik, Xu, Xuan, Bae, Joseph, Chen, Chao, Prasanna, Prateek

论文摘要

医疗图像的临床结果或严重性预测主要集中在单个时间点或快照扫描中的学习表示上。已经表明,疾病进展可以更好地以时间成像为特征。因此,我们假设可以利用从顺序图像中利用疾病进展信息来改善结果预测。我们提出了一种深入学习方法,该方法利用时间进展信息来改善单个时间点图像的临床结果预测。在我们的方法中,基于自我注意力的时间卷积网络(TCN)用于学习最反映疾病轨迹的表示。同时,视觉变压器以自我监督的方式预测,以从单个时间点图像中提取特征。关键贡献是设计一个重新校准模块,该模块采用最大平均差异损失(MMD)来对齐上述两个上下文表示的分布。我们训练系统以预测单个时间点图像的临床结果和严重性等级。胸部和骨关节炎射线照相数据集的实验表明,我们的方法表现优于其他最先进的技术。

Clinical outcome or severity prediction from medical images has largely focused on learning representations from single-timepoint or snapshot scans. It has been shown that disease progression can be better characterized by temporal imaging. We therefore hypothesized that outcome predictions can be improved by utilizing the disease progression information from sequential images. We present a deep learning approach that leverages temporal progression information to improve clinical outcome predictions from single-timepoint images. In our method, a self-attention based Temporal Convolutional Network (TCN) is used to learn a representation that is most reflective of the disease trajectory. Meanwhile, a Vision Transformer is pretrained in a self-supervised fashion to extract features from single-timepoint images. The key contribution is to design a recalibration module that employs maximum mean discrepancy loss (MMD) to align distributions of the above two contextual representations. We train our system to predict clinical outcomes and severity grades from single-timepoint images. Experiments on chest and osteoarthritis radiography datasets demonstrate that our approach outperforms other state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源