论文标题
可变光球半径对系外行星大气检索的影响
Impact of Variable Photospheric Radius on Exoplanet Atmospheric Retrievals
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Inverse techniques are used to extract information about an exoplanet's atmosphere. These techniques are prone to biased results if the appropriate forward model is not used. One assumption used in a forward model is to assume that the radius of the planet is constant with wavelength, however a more realistic assumption is that the photospheric radius varies with each wavelength. We explore the bias induced when attempting to extract the molecular abundance from an emission spectrum which was generated with a variable radius. We find that for low gravity planets, the retrieval model is not able to fit the data if a constant radius model is used. We find that biased results are obtained when studying a typical hot Jupiter in the MIRI LRS wavelength range. Finally, we show that high gravity planets do not suffer a bias. We recommend that future spectral retrievals that interpret exoplanet emission spectra should take into account a variable radius.