论文标题

全息RG流动和n = 4个测量超级的符号变形

Holographic RG flows and symplectic deformations of N=4 gauged supergravity

论文作者

Karndumri, Parinya

论文摘要

我们研究了四维$ n = 4 $ so(4)\ times so(4)\ sie(4)\ so(3)\ times so(3)\ times so(3)\ times so(3)\ times so(3)$ so(3)$ so(3)$ GAUGE组在符号变形的情况下。一般而言,有四个与每个$ so(3)$因子相对应的电磁性阶段,但是固定在$(6)$ r-符合性中的$(3)$因子的两个阶段是固定的。一个阶段可以将$ sl(2,\ mathbb {r})$变换设置为零。第二个给出了任何非呈现值的等效理论,可以将其设置为$ \ \fracπ{2} $,从而产生的超级级别的超级guauge $ n = 4 $ supersymmetric $ ads_4 $ vacua。其余两个阶段是真正的变形参数,导致不同的$(4)\ times so(4)$衡量的超级加盖。就像$ω$ - $ formed $ so(8)$最大测量超级重力一样,$ ads_4 $ vuuum的宇宙常数和标量质量在标量歧管的起源上具有$ so(4)\ so(4)\ so(4)$对称性不取决于电 - 磁性阶段。我们发现$ n = 1 $全息RG流量解决方案之间的$ n = 4 $关键点,$ so(4)\ so(4)$和$ SO(3)_ {\ textrm {diag}} \ times so(3)\ times so(3)\ times so(3)对称性。我们还提供$ n = 2 $,$ n = 1 $ rg流从这些关键点到各种非统一阶段。但是,与$ω$成型的$ SO(8)$衡量的超级重力相反,仅对于所考虑的标量扇区内的变形参数的特定值,存在非平凡的超对称$ ads_4 $关键点。

We study four-dimensional $N=4$ gauged supergravity with $SO(4)\times SO(4)\sim SO(3)\times SO(3)\times SO(3)\times SO(3)$ gauge group in the presence of symplectic deformations. There are in general four electric-magnetic phases corresponding to each $SO(3)$ factor, but two phases of the $SO(3)$ factors embedded in the $SO(6)$ R-symmetry are fixed. One phase can be set to zero by $SL(2,\mathbb{R})$ transformations. The second one gives equivalent theories for any non-vanishing values and can be set to $\fracπ{2}$ resulting in gauged supergravities that admit $N=4$ supersymmetric $AdS_4$ vacua. The remaining two phases are truely deformation parameters leading to different $SO(4)\times SO(4)$ gauged supergravities. As in the $ω$-deformed $SO(8)$ maximal gauged supergravity, the cosmological constant and scalar masses of the $AdS_4$ vacuum at the origin of the scalar manifold with $SO(4)\times SO(4)$ symmetry do not depend on the electric-magnetic phases. We find $N=1$ holographic RG flow solutions between $N=4$ critical points with $SO(4)\times SO(4)$ and $SO(3)_{\textrm{diag}}\times SO(3)\times SO(3)$ or $SO(3)\times SO(3)_{\textrm{diag}}\times SO(3)$ symmetries. We also give $N=2$ and $N=1$ RG flows from these critical points to various non-conformal phases. However, contrary to the $ω$-deformed $SO(8)$ gauged supergravity, there exist non-trivial supersymmetric $AdS_4$ critical points only for particular values of the deformation parameters within the scalar sectors under consideration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源