论文标题
RGB融合人员重新识别的模态自适应混合和不变分解
Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared Person Re-Identification
论文作者
论文摘要
RGB-Infrade人的重新识别是一项新兴的跨模式重新识别任务,由于RGB和红外图像之间的模式差异很大,这非常具有挑战性。在这项工作中,我们提出了一种新型的模态自适应混合和不变分解(MID)方法,用于RGB-Infrade人重新识别,以学习模态不变和歧视性表示。 MID设计一种模态自适应混合方案,以在RGB和红外图像之间生成合适的混合模态图像,以减轻像素级别的固有模态差异。它将模式混合过程作为马尔可夫决策过程,在该过程中,参与者批评的代理在深度强化学习框架下学习了动态和局部线性插值策略。这样的政策保证了在更连续的潜在空间中的模态不变性,并避免了损坏的混合方式样本的流动。此外,为了进一步计算特征级别的差异并强制执行不变的视觉语义,MID采用模态自适应卷积分解,将常规卷积层拆分为特定于模态的基础层和模态共享系数层。对两个具有挑战性的基准测试的广泛实验结果表明,中间的表现优于最先进的方法。
RGB-infrared person re-identification is an emerging cross-modality re-identification task, which is very challenging due to significant modality discrepancy between RGB and infrared images. In this work, we propose a novel modality-adaptive mixup and invariant decomposition (MID) approach for RGB-infrared person re-identification towards learning modality-invariant and discriminative representations. MID designs a modality-adaptive mixup scheme to generate suitable mixed modality images between RGB and infrared images for mitigating the inherent modality discrepancy at the pixel-level. It formulates modality mixup procedure as Markov decision process, where an actor-critic agent learns dynamical and local linear interpolation policy between different regions of cross-modality images under a deep reinforcement learning framework. Such policy guarantees modality-invariance in a more continuous latent space and avoids manifold intrusion by the corrupted mixed modality samples. Moreover, to further counter modality discrepancy and enforce invariant visual semantics at the feature-level, MID employs modality-adaptive convolution decomposition to disassemble a regular convolution layer into modality-specific basis layers and a modality-shared coefficient layer. Extensive experimental results on two challenging benchmarks demonstrate superior performance of MID over state-of-the-art methods.