论文标题
部分可观测时空混沌系统的无模型预测
Pushdown Automata and Context-Free Grammars in Bisimulation Semantics
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Turing machine models an old-fashioned computer, that does not interact with the user or with other computers, and only does batch processing. Therefore, we came up with a Reactive Turing Machine that does not have these shortcomings. In the Reactive Turing Machine, transitions have labels to give a notion of interactivity. In the resulting process graph, we use bisimilarity instead of language equivalence. Subsequently, we considered other classical theorems and notions from automata theory and formal languages theory. In this paper, we consider the classical theorem of the correspondence between pushdown automata and context-free grammars. By changing the process operator of sequential composition to a sequencing operator with intermediate acceptance, we get a better correspondence in our setting. We find that the missing ingredient to recover the full correspondence is the addition of a notion of state awareness.