论文标题
部分可观测时空混沌系统的无模型预测
Resilience in multiplex networks by addition of cross-repulsive links
论文作者
论文摘要
通过添加选择性线性扩散的交叉耦合链接,相同动力单元的多路复用网络可抵抗参数扰动。一个或多个网络节点中任何瞬间的参数漂移都会破坏同步,从而导致网络性能的故障甚至崩溃。我们通过选择性添加交叉耦合链接来介绍[PRE 95,062204(2017)]恢复策略,以将网络中的同步链接在网络中,这是由于参数不匹配(小或大)在任何节点中。当出现的同步与小参数漂移相对应有弹性时,该概念将扩展到2层的多路复用网络。此外,同步状态的稳定性从局部稳定性到同步的全局稳定性增强。通过添加交叉耦合,该网络在除扰动节点以外的所有节点中恢复了完整的同步,该节点与所有未扰动的节点一起出现在一种普遍的同步。普遍的同步仅通过与不匹配成正比的缩放因子的缩放因子的状态变量中的线性振幅响应仅表现出来。一组系统的规则是从代表节点动力学的动态系统的线性流矩阵得出的,这些动力学有助于找到交叉耦合链接的连接矩阵。 Lyapunov函数稳定性条件用于确定交叉耦合链路强度,进而建立了多路复用网络同步的全局稳定性。我们通过分析结果和两个示例的多重网络示例来验证我们提出的耦合方案的功效。在第一个示例中,我们在每一层中使用非本地连接性,并使用Fitzhugh-Nagumo神经元模型的节点动力学。
A multiplex network of identical dynamical units becomes resilient against parameter perturbation by adding selective linear diffusive cross-coupling links. A parameter drift at any instant in one or multiple network nodes can destroy synchrony, causing failure and even collapse in the network performance. We introduced [PRE 95, 062204(2017)] a recovery strategy by selective addition of cross-coupling links to save synchrony in the network from the edge of failure due to parameter mismatch (small or large) in any nodes. This concept is extended to 2-layered multiplex networks when the emergent synchrony becomes resilient against a small or large parameter drifting. In addition, the stability of the synchronous state is enhanced from local stability to global stability of synchrony. By the addition of cross-coupling, the network revives complete synchrony in all the nodes except the perturbed nodes, which emerges into a type of generalized synchrony with all the unperturbed nodes. The generalized synchrony is manifested simply by a linear amplitude response in the state variable(s) of the perturbed node(s) by a scaling factor proportional to the mismatch. A set of systematic rules has been derived from the linear flow matrix of the dynamical system representing the nodes dynamics that helps find the connectivity matrix of the cross-coupling links. Lyapunov function stability condition is used to determine the cross-coupling link strength that, in turn, establishes global stability of synchrony of the multiplex network. We verify the efficacy of our proposed coupling scheme with analytical results and numerical simulations of two examples of multiplex networks. In the first example, we use non-local connectivity in each layer, with nodal dynamics of the FitzHugh-Nagumo neuron model.