论文标题

部分可观测时空混沌系统的无模型预测

$β$-DARTS: Beta-Decay Regularization for Differentiable Architecture Search

论文作者

Ye, Peng, Li, Baopu, Li, Yikang, Chen, Tao, Fan, Jiayuan, Ouyang, Wanli

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Neural Architecture Search~(NAS) has attracted increasingly more attention in recent years because of its capability to design deep neural networks automatically. Among them, differential NAS approaches such as DARTS, have gained popularity for the search efficiency. However, they suffer from two main issues, the weak robustness to the performance collapse and the poor generalization ability of the searched architectures. To solve these two problems, a simple-but-efficient regularization method, termed as Beta-Decay, is proposed to regularize the DARTS-based NAS searching process. Specifically, Beta-Decay regularization can impose constraints to keep the value and variance of activated architecture parameters from too large. Furthermore, we provide in-depth theoretical analysis on how it works and why it works. Experimental results on NAS-Bench-201 show that our proposed method can help to stabilize the searching process and makes the searched network more transferable across different datasets. In addition, our search scheme shows an outstanding property of being less dependent on training time and data. Comprehensive experiments on a variety of search spaces and datasets validate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源