论文标题

等离子体 - 沃克菲尔德加速器的恢复时间

Recovery time of a plasma-wakefield accelerator

论文作者

D'Arcy, R., Chappell, J., Beinortaite, J., Diederichs, S., Boyle, G., Foster, B., Garland, M. J., Caminal, P. Gonzalez, Lindstrøm, C. A., Loisch, G., Schreiber, S., Schröder, S., Shalloo, R. J., Thévenet, M., Wesch, S., Wing, M., Osterhoff, J.

论文摘要

强烈的粒子束与血浆的相互作用会导致血浆唤醒能够维持每米电场的Gigavolt电场,该电场的数量级比最先进的无线电频率技术高的数量级。因此,等离子体韦克菲尔德可以强烈加速带电的颗粒,并提供机会达到较小的粒子能量,并因此更较小,因此可获得更广泛的加速器设施。但是,高能物理和光子科学的亮度和光彩要求需要以每秒数千甚至数百万美元的重复速率加速粒子,这比血浆沃克菲尔德技术的数量级高。在这里,我们通过测量Wakefield在扰动后恢复到其初始状态所需的时间来研究梁驱动等离子体加速器的重复速率上限。测得的许多纳秒级恢复时间确定了等离子体中梅加赫兹加速度的原则可达到的能力。扰动的实验特征通过对时间不断发展的抛物线离子通道的模拟进行了很好的描述,从而将能量从崩溃的唤醒转移到周围的介质。该结果表明,可以在当前和将来的粒子物理和光子科学设施上开发等离子体 - 唤醒模块作为可行的高重复利率促进器。

The interaction of intense particle bunches with plasma can give rise to plasma wakes capable of sustaining gigavolt-per-metre electric fields, which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology. Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology. Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源