论文标题

最短暂的随机步行无限地削减时间

Most transient random walks have infinitely many cut times

论文作者

Halberstam, Noah, Hutchcroft, Tom

论文摘要

我们证明,如果$(x_n)_ {n \ geq 0} $是瞬态图上的随机步行,使得绿色的函数至少沿随机步行多个多样地衰减,则几乎可以肯定地肯定地固定了很多时间。此条件特别适用于严格大于$ 2 $的光谱维度图。实际上,我们的证明适用于马尔可夫链(可能是不可逆的)马尔可夫链,满足绿色功能的类似衰减条件,这对于出生死亡链而言是锋利的。我们推断出Diaconis和Freedman(Ann。probab。1980)的猜想是同一类马尔可夫链,并解决了本杰米尼,古雷尔·古里维奇(Gurel-Gurevich)和施拉姆(Ann。probab。2011)的猜想,这些猜测是无限的许多切割时间,以实现正速度的随机步行时间。

We prove that if $(X_n)_{n\geq 0}$ is a random walk on a transient graph such that the Green's function decays at least polynomially along the random walk, then $(X_n)_{n\geq 0}$ has infinitely many cut times almost surely. This condition applies in particular to any graph of spectral dimension strictly larger than $2$. In fact, our proof applies to general (possibly nonreversible) Markov chains satisfying a similar decay condition for the Green's function that is sharp for birth-death chains. We deduce that a conjecture of Diaconis and Freedman (Ann. Probab. 1980) holds for the same class of Markov chains, and resolve a conjecture of Benjamini, Gurel-Gurevich, and Schramm (Ann. Probab. 2011) on the existence of infinitely many cut times for random walks of positive speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源