论文标题
64点复合FFT的子频段{1,2,5,6}的计算及其扩展到n(= 2^n)fft
Calculation of Sub-bands {1,2,5,6} for 64-Point Complex FFT and Its extension to N (=2^N) Point FFT
论文作者
论文摘要
FFT算法是使用数字信号处理最多的算法之一。数字信号处理在生物医学应用中变得很重要。 FFT的此处Hardware实现发现了对生物磨损设备的有用应用。但是,对于这些设备而言,低功率和低区域至关重要。在本报告中,我们研究了频率(dif)fft的子结构,其中许多子频段对我们来说是感兴趣的。具体而言,我们将频率的范围划分为8个子带(0-7),并计算出4个(1,2,5,6)。我们表明,使用概念(例如pushingandradix22),可以减少复杂乘法的数量,以减少16分,32分和64分的FFTSWHILE计算这些特定频段的数量。后来,我们还基于优化的64点FFT结构扩展了TON = 2N点FFT。使用Mermerge-FFT进一步促进了复杂乘法的数量。我们的结果表明,与不优化的结构相比,我们的优化结构可以降低乘法数(以及功率)的数量。这可以在生物医学信号处理中找到应用,而计算生理时间序列的光谱密度,其中降低计算能力至关重要
FFT algorithm is one of the most applied algorithmsin digital signal processing. Digital signal processing hasgradually become important in biomedical application. Herehardware implementation of FFTs have found useful appli-cations for bio-wearable devices. However, for these devices, low-power and low-area are of utmost importance.In this report, we investigate a sub-structure of decimation-in-frequency (DIF) FFT where a number of sub-bands areof interest to us. Specifically, we divide the range of frequencies into 8 sub-bands (0-7) and calculate 4 of them( 1,2,5,6). We show that using concepts likepushingandradix22, the number of complex multiplications can be dras-tically reduced for 16-point, 32-point and 64-point FFTswhile computing those specific bands. Later, we also extendit toN= 2n-point FFT based on optimized 64-point FFTstructure. The number of complex multiplications is furtherreduced usingmerge-FFT. Our results show that the numberof multiplications (and hence power) can be reduced greatlyusing our optimized structure compared to an unoptimizedstructure. This can find application in biomedical signal processing specifically while computingp ower spectral density of a physiological time series where reducing computational power is of utmost importance