论文标题
半监督的学习使用强大的损失
Semi-supervised Learning using Robust Loss
论文作者
论文摘要
手动标记的数据的量在医疗应用中受到限制,因此,半监督的学习和自动标签策略可以成为培训深层神经网络的资产。但是,自动生成的标签的质量可能不均匀,并且不如手动标签。在本文中,我们建议一种半监督的培训策略来利用手动标记的数据和额外的未标记数据。与现有方法相反,我们为自动标记的数据应用强大的损失,以使用教师学生框架自动弥补数据质量不均匀。首先,我们使用在标记数据上预先训练的教师模型生成了用于未标记数据的伪标签。这些伪标记很嘈杂,并且将它们与标记的数据一起训练深度神经网络可以严重降低学习的特征表示和网络的概括。在这里,我们通过使用强大的损耗函数来减轻这些伪标记的效果。具体而言,我们使用三个可靠的损耗函数,即β跨透镜,对称跨透镜和广义跨膜片。我们表明,我们提出的策略通过补偿图像分类和细分应用中标签质量的不均匀质量来改善模型性能。
The amount of manually labeled data is limited in medical applications, so semi-supervised learning and automatic labeling strategies can be an asset for training deep neural networks. However, the quality of the automatically generated labels can be uneven and inferior to manual labels. In this paper, we suggest a semi-supervised training strategy for leveraging both manually labeled data and extra unlabeled data. In contrast to the existing approaches, we apply robust loss for the automated labeled data to automatically compensate for the uneven data quality using a teacher-student framework. First, we generate pseudo-labels for unlabeled data using a teacher model pre-trained on labeled data. These pseudo-labels are noisy, and using them along with labeled data for training a deep neural network can severely degrade learned feature representations and the generalization of the network. Here we mitigate the effect of these pseudo-labels by using robust loss functions. Specifically, we use three robust loss functions, namely beta cross-entropy, symmetric cross-entropy, and generalized cross-entropy. We show that our proposed strategy improves the model performance by compensating for the uneven quality of labels in image classification as well as segmentation applications.