论文标题
roloma:用手臂进行四足机器人的强大机车操作
RoLoMa: Robust Loco-Manipulation for Quadruped Robots with Arms
论文作者
论文摘要
机器人系统在现实世界中的部署需要一定程度的鲁棒性才能处理不确定性因素,例如动态模型中的不匹配,传感器读数中的噪声和通信延迟。一些方法在控制阶段反应地解决了这些问题。但是,无论控制器如何,在线运动执行只能像在任何给定状态下允许的系统功能一样健壮。这就是为什么重要的动作计划重要的,在这些方案中,鲁棒性被主动认为。为此,我们提出了一个指标(源自第一原则),以表示反对外部干扰的鲁棒性。然后,我们在轨迹优化框架内使用此指标来求解复杂的Loco操作任务。通过我们的实验,我们表明,使用我们的方法产生的轨迹可以抵抗从任何可能的方向源自任何方向的更大范围。通过使用我们的方法,我们可以计算像以前一样有效地解决任务的轨迹,并具有能够抵消在最坏情况下更强大的干扰的额外好处。
Deployment of robotic systems in the real world requires a certain level of robustness in order to deal with uncertainty factors, such as mismatches in the dynamics model, noise in sensor readings, and communication delays. Some approaches tackle these issues reactively at the control stage. However, regardless of the controller, online motion execution can only be as robust as the system capabilities allow at any given state. This is why it is important to have good motion plans to begin with, where robustness is considered proactively. To this end, we propose a metric (derived from first principles) for representing robustness against external disturbances. We then use this metric within our trajectory optimization framework for solving complex loco-manipulation tasks. Through our experiments, we show that trajectories generated using our approach can resist a greater range of forces originating from any possible direction. By using our method, we can compute trajectories that solve tasks as effectively as before, with the added benefit of being able to counteract stronger disturbances in worst-case scenarios.