论文标题

稳定:从间接观察中同时进行状态估计和动态学习

STEADY: Simultaneous State Estimation and Dynamics Learning from Indirect Observations

论文作者

Wei, Jiayi, Holtz, Jarrett, Dillig, Isil, Biswas, Joydeep

论文摘要

准确的动力学模型在许多机器人技术应用中起着至关重要的作用,例如越野导航和高速驾驶。但是,学习随机运动动力学模型的许多最新方法都需要对机器人状态进行精确测量,因为它标记为输入/输出示例,由于传感器能力有限,并且缺乏地面真理,因此在室外设置中很难获得。在这项工作中,我们提出了一种新技术,用于通过同时进行状态估计和动态学习来从嘈杂和间接观察中学习神经随机的动力学模型。提出的技术迭代地改善了预期最大化环路的动力学模型,其中E步长使用粒子滤波样品后状态轨迹,M步骤更新动力学,以使通过随机渐变上升的采样轨迹更加一致。我们在模拟和现实世界的基准测试中评估了我们的方法,并将其与几种基线技术进行比较。我们的方法不仅达到了明显更高的精度,而且对观察噪声也更加强大,从而显示出有望提高许多其他机器人应用的性能。

Accurate kinodynamic models play a crucial role in many robotics applications such as off-road navigation and high-speed driving. Many state-of-the-art approaches in learning stochastic kinodynamic models, however, require precise measurements of robot states as labeled input/output examples, which can be hard to obtain in outdoor settings due to limited sensor capabilities and the absence of ground truth. In this work, we propose a new technique for learning neural stochastic kinodynamic models from noisy and indirect observations by performing simultaneous state estimation and dynamics learning. The proposed technique iteratively improves the kinodynamic model in an expectation-maximization loop, where the E Step samples posterior state trajectories using particle filtering, and the M Step updates the dynamics to be more consistent with the sampled trajectories via stochastic gradient ascent. We evaluate our approach on both simulation and real-world benchmarks and compare it with several baseline techniques. Our approach not only achieves significantly higher accuracy but is also more robust to observation noise, thereby showing promise for boosting the performance of many other robotics applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源