论文标题
有限的系统大小校正$ ϕ^4 $理论中的NLO散射
Finite System Size Correction to NLO Scattering in $ϕ^4$ Theory
论文作者
论文摘要
我们计算$ 2 \ rightArrow2 $在$ \ mathbb r^{1,m} \ times t^n $上散布在$ \ mathbb r^{1上。我们使用“分母正则化”而不是通常的维度正则化执行计算,这允许$ t^n $的不对称配置。我们给出了广义爱泼斯坦Zeta函数的分析延续的透明派生和方程。我们表明,光学定理得到满足并通过Hardy对平方计数函数进行概括。我们对含义发表评论。
We compute $2\rightarrow2$ scattering in massive $ϕ^4$ theory on $\mathbb R^{1,m}\times T^n$ to NLO. We perform the calculations using "denominator regularization" instead of the usual dimensional regularization, which allows for asymmetric configurations of the $T^n$. We give a transparent derivation of and equation for the analytic continuation of the generalized Epstein zeta function. We show that the Optical Theorem is satisfied and generalize a conjecture by Hardy on square counting functions. We comment on the implications.