论文标题
学习有条件的变异自动编码器,缺少协变量
Learning Conditional Variational Autoencoders with Missing Covariates
论文作者
论文摘要
条件变分自动编码器(CVAE)是多功能的深层生成模型,通过用辅助协变量调节生成模型来扩展标准VAE框架。原始CVAE模型假设数据样本是独立的,而最新的条件VAE模型(例如高斯过程(GP)先前的VAE)可以考虑所有数据样本中的复杂相关结构。尽管已经提出了几种方法是从部分观察到的数据集中学习标准VAE,但这些方法的条件vaes缺乏。在这项工作中,我们提出了一种从数据集中学习条件VAE的方法,其中辅助协变量也可以包含缺失值。所提出的方法增加了缺失协变量的先验分布的条件VAE,并使用摊销的变分推断估算了其后验。在训练时,我们的方法边缘化与缺失协变量相关的不确定性,同时使证据下限最大化。我们开发了具有与迷你批次兼容的CVAE和GP先验VAE的计算有效方法。我们在模拟数据集以及临床试验研究上的实验表明,该方法在从非颞,时间和纵向数据集中学习有条件的VAE方面优于以前的方法。
Conditional variational autoencoders (CVAEs) are versatile deep generative models that extend the standard VAE framework by conditioning the generative model with auxiliary covariates. The original CVAE model assumes that the data samples are independent, whereas more recent conditional VAE models, such as the Gaussian process (GP) prior VAEs, can account for complex correlation structures across all data samples. While several methods have been proposed to learn standard VAEs from partially observed datasets, these methods fall short for conditional VAEs. In this work, we propose a method to learn conditional VAEs from datasets in which auxiliary covariates can contain missing values as well. The proposed method augments the conditional VAEs with a prior distribution for the missing covariates and estimates their posterior using amortised variational inference. At training time, our method marginalises the uncertainty associated with the missing covariates while simultaneously maximising the evidence lower bound. We develop computationally efficient methods to learn CVAEs and GP prior VAEs that are compatible with mini-batching. Our experiments on simulated datasets as well as on a clinical trial study show that the proposed method outperforms previous methods in learning conditional VAEs from non-temporal, temporal, and longitudinal datasets.