论文标题

基于现场监控数据的实验,针对自动故障检测算法设计的实用建议

Practical Recommendations for the Design of Automatic Fault Detection Algorithms Based on Experiments with Field Monitoring Data

论文作者

Filho, Eduardo Abdon Sarquis, Müller, Björn, Holland, Nicolas, Reise, Christian, Kiefer, Klaus, Kollosch, Bernd, Branco, Paulo J. Costa

论文摘要

自动故障检测(AFD)是优化光伏(PV)系统投资组合的操作和维护的关键技术。检测PV系统中故障的一种非常常见的方法是基于测量和模拟性能之间的比较。尽管许多作者已经探索了这种方法,但由于缺乏评估其性能的共同基础,但仍不清楚AFD算法设计中的影响方面是什么。在这项研究中,使用了58个月在德国安装的80个屋顶型PV系统收集的数据,在实际操作条件下测试了一系列AFD算法。结果表明,这种类型的AFD算法有可能检测高达90%以上的能量损失的82.8%。通常,模拟精度越高,特异性越高。使用较少准确的模拟可以以降低特异性成本提高灵敏度。分析测量值会使算法对仿真精度的敏感性降低。在统计分析中,使用机器学习聚类算法的使用表明,即使在建模精度不高的情况下,也可以防止虚假警报。如果可以容忍稍高的错误警报,则使用Shewhart图表的每日PR分析提供了高灵敏度,具有非常简单的解决方案,而无需更复杂的算法进行建模或聚类。

Automatic fault detection (AFD) is a key technology to optimize the Operation and Maintenance of photovoltaic (PV) systems portfolios. A very common approach to detect faults in PV systems is based on the comparison between measured and simulated performance. Although this approach has been explored by many authors, due to the lack a common basis for evaluating their performance, it is still unclear what are the influencing aspects in the design of AFD algorithms. In this study, a series of AFD algorithms have been tested under real operating conditions, using monitoring data collected over 58 months on 80 rooftop-type PV systems installed in Germany. The results shown that this type of AFD algorithm have the potential to detect up to 82.8% of the energy losses with specificity above 90%. In general, the higher the simulation accuracy, the higher the specificity. The use of less accurate simulations can increase sensitivity at the cost of decreasing specificity. Analyzing the measurements individually makes the algorithm less sensitive to the simulation accuracy. The use of machine learning clustering algorithm for the statistical analysis showed exceptional ability to prevent false alerts, even in cases where the modeling accuracy is not high. If a slightly higher level of false alerts can be tolerated, the analysis of daily PR using a Shewhart chart provides the high sensitivity with an exceptionally simple solution with no need for more complex algorithms for modeling or clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源