论文标题
使用合并的统计测试的模型不合时式检测
Model-agnostic out-of-distribution detection using combined statistical tests
论文作者
论文摘要
我们提出了使用训练有素的生成模型的简单方法用于分布外检测。这些技术基于经典的统计检验,是模型 - 敏锐的,因为它们可以应用于任何可区分的生成模型。这个想法是将经典参数测试(RAO的得分测试)与最近引入的典型性测试相结合。这两个测试统计均基于典型性测试的可能性及其分数测试的梯度,因此在理论上均具有良好的基础,并利用了不同的信息来源。我们表明,使用Fisher的方法将它们结合在一起,可以进行更准确的分布测试。我们还讨论了将分布外检测作为统计测试问题的好处,特别是指出假阳性控制对于实际分布检测可能很有价值。尽管它们的简单性和普遍性,但这些方法仍可以与特定于模型的分布式检测算法具有竞争力,而无需对外部分布的任何假设。
We present simple methods for out-of-distribution detection using a trained generative model. These techniques, based on classical statistical tests, are model-agnostic in the sense that they can be applied to any differentiable generative model. The idea is to combine a classical parametric test (Rao's score test) with the recently introduced typicality test. These two test statistics are both theoretically well-founded and exploit different sources of information based on the likelihood for the typicality test and its gradient for the score test. We show that combining them using Fisher's method overall leads to a more accurate out-of-distribution test. We also discuss the benefits of casting out-of-distribution detection as a statistical testing problem, noting in particular that false positive rate control can be valuable for practical out-of-distribution detection. Despite their simplicity and generality, these methods can be competitive with model-specific out-of-distribution detection algorithms without any assumptions on the out-distribution.